האם סדרת פיבונאצ'י מסתתרת באלפבית העברי?

בסדרת הפוסטים שלי על דילוגי אותיות בתורה אמרתי פחות או יותר את כל מה שיש לי לומר על הנסיונות המוזרים לרתום את מה שנראה כמו צירופי מקרים בלתי אפשריים כדי "להוכיח" משהו שלא באמת יכולה להתקיים עבורו הוכחה. אבל זה … להמשיך לקרוא

אינטגרל קווי

בראשית בראו ניוטון ולייבניץ את אינטגרל רימן (רימן בא אחרי ניוטון ולייבניץ, אז מה זה השם הזה? לא נורא, בכל סיפור בריאה טובה צריך סתירות פנימיות). ויהא אינטגרל רימן אינטגרל של פונקציה \(f:\mathbb{R}\to\mathbb{R}\) שמוגדר על קטע \(\left[a,b\right]\subseteq\mathbb{R}\). ויהי ערב ויהי … להמשיך לקרוא

החלפת משתנים בחשבון דיפרנציאלי ואינטגרלי – המשפט הכללי

אחרי פוסט המבוא בנושא, אנחנו רוצים להוכיח את משפט החלפת המשתנים הכללי בחדו"א, עבור אינטגרלים \(n\)-ממדיים. לפני הכל נתחיל בלהזכיר מה המשפט אומר: אם \(g:A\to B\) היא דיפאומורפיזם של קבוצות פתוחות ב-\(\mathbb{R}^{n}\) ו-\(f:B\to\mathbb{R}\) רציפה, אז \(f\) אינטגרבילית מעל \(B\) אם … להמשיך לקרוא

שני דברים מתפלגים אחיד: ראשוניים וטעויות בעיתונים (ואני לא בטוח בקשר לראשוניים)

  לא מזמן עלתה לכותרות בעיתונות תוצאה מתמטית חדשה שעוסקת במספרים ראשוניים. זה די הפתיע אותי כי התוצאה היא אמנם מעניינת, אבל למה שתעניין במיוחד אנשים שאינם מתעניינים במתמטיקה? אולי בגלל האופי שלה, שנראה על פניו "אמפירי" משהו; אולי בגלל … להמשיך לקרוא

האם תלמידה גילתה משפט חדש בגאומטריה אוקלידית? (לא, אבל זה עדיין נחמד)

הנה סיפור יפה על איך ראוי, לדעתי, ללמד וללמוד מתמטיקה בבית הספר התיכון: תמר ברבי, תלמידת כיתה י', הכינה שיעורי בית בגיאומטריה ושמה לב לכך שאפשר לפתור את אחד התרגילים בדרך נוספת. היא הציגה את הדרך הזו בכיתה והמורה העיר … להמשיך לקרוא

מידת ז'ורדן ואינטגרלים מוכללים

הפוסט הזה יהיה קצת טכני ובהתחלה קיוויתי להימנע ממנו, אבל זה יכריח אותי לבצע קפיצות מהירות וגדולות מדי בפוסטים בהמשך, ואני חושב שהנושא הנוכחי מספיק מעניין בפני עצמו. מה שאנחנו רוצים לעשות הוא להבין קצת יותר טוב איך נראים אינטגרלים … להמשיך לקרוא

על כדורים שטוחים וחצאי הרים

יש אנשים שאם מביאים להם כדור, נאמר כדור הארץ, מייד מתחילים להגיד שלא! זה שטוח! זה מישור! כי הנה, תראו, אני עומד על הכדור, ואני מסתכל לכל הכיוונים, ולכל אשר אני מסתכל, הכל שטוח! אז זה מישור! לא כדור! לאנשים … להמשיך לקרוא

החלפת משתנים בחשבון דיפרנציאלי ואינטגרלי ("שיטת ההצבה")

היעד הנוכחי של סדרת הפוסטים שלי על אנליזה וקטורית הוא משפט כבד למדי – משפט החלפת המשתנים. אבל לפני שנצלול למעמקים הטכניים שלו, בואו נחזור לרגע לחדו"א של משתנה יחיד ונדבר על איך משפט החלפת המשתנים נראה שם, גם כי … להמשיך לקרוא

אינטגרלים כפולים, משולשים ו-d-ממדיים

בסדרת הפוסטים שלי על אנליזה וקטורית סיימנו לעת עתה לדבר על נגזרות, ואנחנו עוברים אל עמוד התווך השני של האנליזה – אינטגרלים. הדיון באינטגרלים מתחלק לשלושה שלבים: בשלב הראשון, שהוא מה שנעשה הפעם, אנחנו לוקחים את אינטגרל רימן התמים והנחמד … להמשיך לקרוא

רקורסיה

הבדיחה הידועה אומרת שבמילון ההגדרה של רקורסיה היא "עיין ערך רקורסיה". אבל כנראה שזה לא מספיק טוב, כי ביקשו ממני פוסט על רקורסיות, וספציפית על רקורסיות במדעי המחשב. כך שהפוסט הזה הולך להיות עם מבוא כללי לא טכני, ואחר כך … להמשיך לקרוא

משפט הפונקציה ההפוכה ומשפט הפונקציות הסתומות

פרק ראשון, ובו בקושי התחלנו וכבר אנחנו מעגלים פינות בואו נדבר על מעגל. מעגל הוא הצורה החביבה עלינו. אנחנו אוהבים את המעגל. מהו המעגל? עבורנו זה אוסף כל הנקודות ב-\(\mathbb{R}^{2}\) שמרחקן מנקודה נתונה ("המרכז") הוא זהה (ונקרא "הרדיוס" של המעגל). … להמשיך לקרוא

אנליזה וקטורית – מציאת ערכי קיצון

חלק ראשון, שבו אנו מוצאים ערכי קיצון מקומיים אחד מהשימושים הראשונים של החשבון הדיפרנציאלי והאינטגרלי, שאפשר להציג כבר בשלב מוקדם יחסית, כבר אחרי שראינו מהי נגזרת, הוא פתרון בעיות אופטימיזציה. למשל, מה הזווית הטובה ביותר שבה כדאי לזרוק כדור אם … להמשיך לקרוא

אז בנוגע למתמטיקה ובית הספר…

עד היום נמנעתי כמעט לגמרי מהתייחסויות בבלוג אל מה שהוא אולי הדבר החשוב ביותר למרבית הציבור בכל הנוגע למתמטיקה – האופן שבו נלמדת מתמטיקה בבתי הספר. האדם הממוצע הולך לפגוש את המתמטיקה כמעט אך ורק במסגרת הזו, והמסגרת היא זו … להמשיך לקרוא

האם גוגולפלקס הוא הסמל של סוף המספרים? (לא)

לפני מספר ימים נתקלתי בספר בשם "מתמטיקסם" של יעל רוטנברג. למי שרוצים להתרשם ממנו, הנה לינק לצילומי מסך ממנו בעמוד הפייסבוק של הספריה הלאומית. כפי שניתן לראות שם, וכפי שגם אני התרשמתי בעלעול שלי, מדובר על ספר נחמד מאוד שמציג … להמשיך לקרוא

אנליזה וקטורית – תכונות בסיסיות של הנגזרת

אז הכרנו את הנגזרת של פונקציה \(f:\mathbb{R}^{n}\to\mathbb{R}^{m}\) וראינו איך אפשר לחשב אותה באמצעות נגזרות חלקיות. בואו נעבור עכשיו לכמה תוצאות תיאורטיות כלליות וקלות יחסית, כדי שנתרגל; עד סוף הפוסט נגיע להצגת תוצאה לא טריוויאלית ושימושית – משפט הפונקציה ההפוכה. אבל … להמשיך לקרוא

משפט קוק-לוין

חור מטריד שקיים בבלוג ואני מתכוון להשלים כעת הוא תיאור והוכחה של אחד מהמשפטים הבסיסיים והחשובים ביותר בתורת הסיבוכיות – משפט קוק-לוין. אף שכבר תיארתי את הבסיס לתורת הסיבוכיות בעבר, וגם הראיתי תוצאות מסובכות יותר מקוק-לוין, איכשהו המשפט הזה חמק … להמשיך לקרוא

התעלומה המסתורית של הנער המבריק, יחס הזהב והנוסחה השגויה במוזיאון

העיתונים – גם אתר Nrg, אבל גם אתרים לא ישראליים – מספרים סיפור יפה. נער בן 15 (יהודי, טורחים לציין ב-Nrg, איך לא) מבקר במוזיאון המדע בבוסטון. מגיע לתערוכה על מתמטיקה, ומזהה שם משוואה שנראית לו – הצעיר המבריק – … להמשיך לקרוא

אנליזה וקטורית – נגזרת ונגזרת חלקית

אחרי פוסט המבוא שבו הבטחתי גדולות ונצורות, בואו נעבור לאקשן. כאמור, אני מניח ידע קודם אצל הקוראים, הן באינפי של פונקציות ממשיות והן באלגברה לינארית (עד וכולל מכפלות פנימיות) כך שלא אציג מחדש את המושגים הללו. אלא אם יש ערך … להמשיך לקרוא

אנליזה וקטורית – מבוא

בזמנו כתבתי בבלוג סדרת פוסטים על חשבון אינפיניטסימלי. הצגתי בסדרה הזו את שלושת המושגים הבסיסיים שעליהם החשבון האינפיניטסימלי נשען – הגבול, הנגזרת והאינטגרל – אבל לא הלכתי יותר מדי רחוק אחר כך (אפילו לנושא כמו טורים לא הגעתי). בעקבות בקשה … להמשיך לקרוא

על משחקים ומספרים (חלק ב': מספרים. וקצת משחקים)

בפוסט הקודם התחלתי לבנות קבוצה של מספרים שהמוטיבציה אליהם הגיעה איכשהו מתוך משחקים קומבינטוריים. כזכור, הבניה הייתה פשוטה להפליא: כל מספר מיוצג על ידי אובייקט מהצורה \(\left\{ L|R\right\} \) כאשר \(L,R\) הן קבוצות, וכלל הבניה שלנו הוא ש"מספר" הוא אובייקט … להמשיך לקרוא