נגזרת מרוכבת, פונקציות אנליטיות ונוסחאות קושי-רימן

המושג היסודי בחשבון דיפרנציאלי הוא מושג הנגזרת. כבר הקדשתי לו פוסט, אבל אחזור על הרעיון בקצרה: כאשר יש לנו פונקציה \(f\), אנחנו מעוניינים למדוד את קצב השינוי שלה. המושג האינטואיטיבי שלנו הוא זה של שינוי ממוצע – מסתכלים על ההפרש … להמשיך לקרוא

המשפט היסודי של החשבון הדיפרנציאלי והאינטגרלי

בפוסטים הקודמים על חדו"א הצגתי שני מושגים שונים, שבאו לפתור בעיות שונות והוגדרו בצורות לא קשורות – הנגזרת והאינטגרל. המשותף לשני המושגים הללו היה שבשניהם התבססנו על מושג הגבול כדי להגדיר אותם; ספציפית, הן הנגזרת והן האינטגרל הם תוצרים של … להמשיך לקרוא

היה זה תענוג לגזור

באחד הפוסטים הקודמים הצגתי את מושג הנגזרת, אך כל מה שעשיתי היה להציג את ההגדרה הפורמלית; אם כל מה שיש לנו הוא את ההגדרה הזו, אנחנו עדיין לא יכולים לעשות הרבה. בפוסט הזה אני רוצה להציג את הכלים והתוצאות הבסיסיות … להמשיך לקרוא

אז מה זו נגזרת?

בעיית ה"מכונית שנוסעת מתל אביב לחיפה" נשחקה עד לזרא בבתי הספר, ולכן אני מקווה שתסלחו לי על כך שאני משתמש בה – רכב מנצח לא מחלפים. אם כן, המרחק מתל אביב לחיפה הוא 100 קילומטרים. מכונית יוצאת מתל אביב לחיפה … להמשיך לקרוא

אז מה זה חשבון דיפרנציאלי ואינטגרלי?

אני ממשיך את הפוסטים שלי שבהם אני מנסה להציג נושאים בסיסיים במתמטיקה ברמה שתתאים גם לתלמידי תיכון, והפעם אני רוצה לעסוק באחד מעמודי התווך המרכזיים של המתמטיקה – החשבון הדיפרנציאלי והאינטגרלי, או בקיצור החדו"א (ובשם אחר – החשבון האינפיניטסימלי, האינפי). … להמשיך לקרוא