על יריעות ותבניות (מה משפט סטוקס אומר, בגדול)

מבוא כל סדרת הפוסטים שלי על אנליזה וקטורית עד כה תיארה פחות או יותר את מה שרואים בקורס הבסיס בנושא (שלרוב זוכה לשמות כמו "חדו"א 2" או "אינפי 3" או "חשבון אינפיניטסימלי במספר משתנים" וכדומה). ה"שיא" של קורסי הבסיס הוא … להמשיך לקרוא

אינטגרל משטחי

בפוסט הקודם דיברנו על אינטגרל קווי, שהוא מה שמקבלים כשמנסים לבצע אינטגרציה על פונקציות שחיות ב-\(\mathbb{R}^{n}\) אבל על תחום שהוא חד-ממדי. הצליח לנו יפה, וכמובן שאצל מתמטיקאים הגישה היא שאם משהו עובד יפה במימד אחד למה לא לנסות גם בשני מימדים. … להמשיך לקרוא

אינטגרל קווי

בראשית בראו ניוטון ולייבניץ את אינטגרל רימן (רימן בא אחרי ניוטון ולייבניץ, אז מה זה השם הזה? לא נורא, בכל סיפור בריאה טובה צריך סתירות פנימיות). ויהא אינטגרל רימן אינטגרל של פונקציה \(f:\mathbb{R}\to\mathbb{R}\) שמוגדר על קטע \(\left[a,b\right]\subseteq\mathbb{R}\). ויהי ערב ויהי … להמשיך לקרוא