דמיון מטריצות

בפוסט הקודם דיברתי על ייצוג טרנספורמציות לינאריות באמצעות מטריצות. מה שאולי לא הובלט מספיק שם היה שאת אותה טרנספורמציה לינארית אפשר לייצג באמצעות המון מטריצות, וכל מטריצה מייצגת המון טרנספורמציות לינאריות; מה שקובע חד משמעית את הקשר בין טרנספורמציות ומטריצות … להמשיך לקרוא

קואורדינטות, טרנספורמציות, מטריצות וחיות אחרות

בשעה טובה הגענו אל מה שאני מחשיב בתור אחת התוצאות היפות ביותר במתמטיקה בסיסית. לצערי קל לפספס את היופי כאן (אני כבר מתאר לעצמי קוראים נזעמים שבסוף הפוסט ירטנו שזה בכלל לא יפה או מעניין) ואני מקווה שאצליח להיות משכנע. … להמשיך לקרוא

טרנספורמציות לינאריות

עד עכשיו בפוסטים על אלגברה לינארית דיברתי על מרחבים וקטוריים, כלומר על אובייקט מתמטי שמקיים תכונות מסויימות. השלב הבא במתמטיקה הוא לרוב לבדוק אילו מניפולציות אפשר להפעיל על האובייקט הזה שעדיין מותירות את הסדר הפנימי בו על כנו במובן מסויים. … להמשיך לקרוא

מוסיפים בסיס לדיון על אלגברה לינארית

בפוסט הקודם הצגתי את המושגים של מרחב וקטורי ותת-מרחב וקטורי, וכעת אני רוצה לגשת ישר ולעניין. בפוסט על משוואות הומוגניות ראינו שיש קבוצה קטנה מאוד של פתרונות שכל פתרון אחר ניתן לתיאור כצירוף לינארי שלהם; בפוסט הזה אני רוצה להרחיב … להמשיך לקרוא

אז מה זה מרחב וקטורי?

בשעה טובה ומוצלחת הגענו לפוסט שיתאר במדויק את האובייקט המרכזי של האלגברה הלינארית – מרחב וקטורי. אפשר פשוט לתת את ההגדרה שהיא בעיקר רשימת מכולת של כל מני תכונות אלגבריות, אבל אני מעדיף להתחיל מלהיזכר מה ראינו עד כה. בפוסט … להמשיך לקרוא

משוואות לינאריות – הקרב האחרון

בפוסטים הקודמים שלי על אלגברה לינארית הסברתי קצת איך אפשר לפתור משוואות לינאריות על ידי הבאה שלהן לצורה פשוטה ככל האפשר, ואז הסברתי שבעזרת מטריצות אפשר לחשוב על ה"צורה הפשוטה ככל האפשר" הזו בתור סוג מיוחד של מטריצה, אבל זה … להמשיך לקרוא

כפל מטריצות – מה, לעזאזל?

בפוסט הקודם הצגתי מטריצות בתור כלי שעוזר לי לפתור מערכת משוואות – במקום לכתוב כל פעם את כל מערכת המשוואות, אני כותב מטריצה ו"מדרג" אותה והתהליך חוסך לי כתיבה מיותרת וקצת יותר קל לקריאה. זו מן הסתם לא הסיבה למה … להמשיך לקרוא

מטריצות, דירוג מטריצות ומשוואות לינאריות

משוואות לינאריות הן התירוץ המושלם להתחיל לדבר על האובייקט שבאמת מעניין אותנו – כנראה האובייקט המרכזי באלגברה לינארית ובמתמטיקה בכלל: מטריצות. מטריצה היא רשימה דו-ממדית של איברים (בהקשר שלנו, מספרים) אבל היא יותר מזה: היא אובייקט אלגברי שאפשר לבצע עליו … להמשיך לקרוא

אז איך פותרים משוואות לינאריות?

לטעמי נקודת הפתיחה הטובה ביותר לדיון על אלגברה לינארית היא לתאר מערכות של משוואות לינאריות ואיך פותרים אותן. ראשית, כי זו בעיה קונקרטית ובסיסית במתמטיקה; שנית, כי יש לה פתרון מושלם; שלישית, כי מבחינה טכנית הרבה מאוד מהבעיות שצצות בהקשר … להמשיך לקרוא

אז מה זו אלגברה לינארית?

סטודנטים להנדסה בסמסטר הראשון שלהם מתמודדים עם שני קורסים מתמטיים כבדים. האחד הוא חדו"א (חשבון דיפרנציאלי ואינטגרלי) הידוע לשמצה, והשני הוא אלגברה לינארית (הידועה לשמצה?). על החשיבות של חדו"א כבר דיברתי כאן ואני מקווה להמשיך לדבר בעתיד – אבל מדוע … להמשיך לקרוא

משפט המטריצה-עץ של קירכהוף

אני רוצה לדבר הפעם על מה שלטעמי הוא משפט יפהפה ביותר, גם בשל מה שהוא אומר וגם בשל ההוכחה שלו, שלטעמי מייצגת את כל מה שטוב במתמטיקה – גם דורשת הבנה טכנית לא טריוויאלית, וגם מכילה תובנה עמוקה שמאפשרת לראות … להמשיך לקרוא

בעיית וויל האנטינג

נקודת המוצא העלילתית של הסרט "סיפורו של וויל האנטינג" (וכאן אני עומד לגלות טיפה מפרטי העלילה – אבל לא משהו שלא מתגלה ממילא בעשר הדקות הראשונות של הסרט, ואיננו מהותי כל כך) היא חידה מתמטית שפרופסור ב-MIT נותן לסטודנטים בקורס … להמשיך לקרוא

איך מוצאים את נוסחת פיבונאצ'י?

בדומה לפוסטים אחרים, גם המוטיבציה לפוסט הזה היא שאילתת חיפוש שראויה לתשובה רצינית ולא בת שתי שורות – במקרה הזה, "איך מוכיחים נוסחת פיבונאצ'י". איני בטוח אם הכוונה היא רק להוכחה שהנוסחה נכונה, או גם למציאת הנוסחה; לדעתי מציאת הנוסחה … להמשיך לקרוא

מדריך מקוצר לחשיבה ב-n מימדים

דוק בראון אומר למרטי "לחשוב במימד הרביעי". פיזיקאים מתעסקים בעולמות עם 26 מימדים, או 11, או 10. גם אנשי העידן החדש קופצים על מושגי המימדים הללו כמוצאי שלל רב וטוענים שמגוון חייזרים חיים בהם. אבל מה זה בעצם מימד, מבחינה … להמשיך לקרוא

אז איך פותרים משוואה ריבועית?

אחת מהשאלות שהביאה נפשות תועות לבלוג הייתה "איך פותרים משוואה ריבועית". תכננתי לענות עליה במסגרת מדור "שאלות ותשובות", תשובה שהייתה בערך זו: "הפתרון של המשוואה \(ax^2+bx+c=0\) הוא \(x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)", אבל אז הבנתי שזו אולי תשובה נכונה ומדוייקת, אבל התחמקות גמורה מהשאלה. … להמשיך לקרוא

בסיס מוצק מי ימצא

אין מנוס מדוגמה מתמטית "קלאסית" להוכחה לא קונסטרוקטיבית, ולכן אביא אותה כעת. כדי להבין את הדוגמה יש צורך להכיר אלגברה לינארית בסיסית – מהו מרחב וקטורי ומהו בסיס. לא ארחיב כאן על המושגים הללו, אלא אקפוץ ישר לטענה: לכל מרחב … להמשיך לקרוא