דמיון מטריצות

בפוסט הקודם דיברתי על ייצוג טרנספורמציות לינאריות באמצעות מטריצות. מה שאולי לא הובלט מספיק שם היה שאת אותה טרנספורמציה לינארית אפשר לייצג באמצעות המון מטריצות, וכל מטריצה מייצגת המון טרנספורמציות לינאריות; מה שקובע חד משמעית את הקשר בין טרנספורמציות ומטריצות … להמשיך לקרוא

קואורדינטות, טרנספורמציות, מטריצות וחיות אחרות

בשעה טובה הגענו אל מה שאני מחשיב בתור אחת התוצאות היפות ביותר במתמטיקה בסיסית. לצערי קל לפספס את היופי כאן (אני כבר מתאר לעצמי קוראים נזעמים שבסוף הפוסט ירטנו שזה בכלל לא יפה או מעניין) ואני מקווה שאצליח להיות משכנע. … להמשיך לקרוא

הסריקה של גרהאם

אני לוקח הפסקה קצרה מהאלגברה הלינארית כי השאלה לדוגמה של תחרות התכנות של האוניברסיטה העברית (פרסומת זולה, כל עוד זה רלוונטי, מופיעה כאן) עשתה לי חשק לדבר קצת על בעיה גאומטרית ופתרונה – הבעיה של חישוב קמור של קבוצת נקודות … להמשיך לקרוא

טרנספורמציות לינאריות

עד עכשיו בפוסטים על אלגברה לינארית דיברתי על מרחבים וקטוריים, כלומר על אובייקט מתמטי שמקיים תכונות מסויימות. השלב הבא במתמטיקה הוא לרוב לבדוק אילו מניפולציות אפשר להפעיל על האובייקט הזה שעדיין מותירות את הסדר הפנימי בו על כנו במובן מסויים. … להמשיך לקרוא

מוסיפים בסיס לדיון על אלגברה לינארית

בפוסט הקודם הצגתי את המושגים של מרחב וקטורי ותת-מרחב וקטורי, וכעת אני רוצה לגשת ישר ולעניין. בפוסט על משוואות הומוגניות ראינו שיש קבוצה קטנה מאוד של פתרונות שכל פתרון אחר ניתן לתיאור כצירוף לינארי שלהם; בפוסט הזה אני רוצה להרחיב … להמשיך לקרוא

אז מה זה מרחב וקטורי?

בשעה טובה ומוצלחת הגענו לפוסט שיתאר במדויק את האובייקט המרכזי של האלגברה הלינארית – מרחב וקטורי. אפשר פשוט לתת את ההגדרה שהיא בעיקר רשימת מכולת של כל מני תכונות אלגבריות, אבל אני מעדיף להתחיל מלהיזכר מה ראינו עד כה. בפוסט … להמשיך לקרוא

משוואות לינאריות – הקרב האחרון

בפוסטים הקודמים שלי על אלגברה לינארית הסברתי קצת איך אפשר לפתור משוואות לינאריות על ידי הבאה שלהן לצורה פשוטה ככל האפשר, ואז הסברתי שבעזרת מטריצות אפשר לחשוב על ה"צורה הפשוטה ככל האפשר" הזו בתור סוג מיוחד של מטריצה, אבל זה … להמשיך לקרוא

גבישים כמו-מחזוריים וריצופים כן-מחזוריים

בשעה טובה פרופ' דני שכטמן מהטכניון זכה בפרס נובל על גילוי הגבישים הכמו-מחזוריים, וזו הזדמנות טובה להסביר קצת את ההיבט המתמטי של העניין. במובן מסויים המתמטיקה היא הטיפוס הרע בסיפור הזה: אם לוותר בכוונה על הדיוק למען הרומנטיקה, שכטמן גילה … להמשיך לקרוא

כפל מטריצות – מה, לעזאזל?

בפוסט הקודם הצגתי מטריצות בתור כלי שעוזר לי לפתור מערכת משוואות – במקום לכתוב כל פעם את כל מערכת המשוואות, אני כותב מטריצה ו"מדרג" אותה והתהליך חוסך לי כתיבה מיותרת וקצת יותר קל לקריאה. זו מן הסתם לא הסיבה למה … להמשיך לקרוא

מטריצות, דירוג מטריצות ומשוואות לינאריות

משוואות לינאריות הן התירוץ המושלם להתחיל לדבר על האובייקט שבאמת מעניין אותנו – כנראה האובייקט המרכזי באלגברה לינארית ובמתמטיקה בכלל: מטריצות. מטריצה היא רשימה דו-ממדית של איברים (בהקשר שלנו, מספרים) אבל היא יותר מזה: היא אובייקט אלגברי שאפשר לבצע עליו … להמשיך לקרוא

אז איך פותרים משוואות לינאריות?

לטעמי נקודת הפתיחה הטובה ביותר לדיון על אלגברה לינארית היא לתאר מערכות של משוואות לינאריות ואיך פותרים אותן. ראשית, כי זו בעיה קונקרטית ובסיסית במתמטיקה; שנית, כי יש לה פתרון מושלם; שלישית, כי מבחינה טכנית הרבה מאוד מהבעיות שצצות בהקשר … להמשיך לקרוא